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Motivated by advances in signal processing technology that support more complex
algorithms, a new look is taken at the problem of estimating the phase and other param-
eters of a periodic waveform in additive Gaussian noise, In Part 1, the general problem
was introduced and the maximum a posteriori probability criterion with signal space
interpretation was used to obtain the structures of optimum and some suboptimum
Dhase estimators for known constant frequency and unknown constant phase with an
a priori distribution. In Part II, optimal algorithms are obtained for some cases where
the frequency is a parameterized function of time with the unknown parameters and
phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic
geometry of hypersurfaces is introduced to provide insight to the estimation problem

Jor the small noise and large noise cases.

l. Introduction

The results of Part I (Ref. 1) are limited to the single-
parameter estimation of phase with frequency f, exactly
known, based on an observation of duration T = ¢, - ¢,. The
maximum a posteriori probability (MAP) estimator X, is the
value of the phase x that maximizes

t
2 f : z(M)Y(f, T +x)dr +1In f, (x) an?
NO tl .

lEquation number from Part L.

where N, is the one-sided power spectral density of the addi-
tive Gaussian noise, z(*) is the observed noisy signal, y(*) is the
periodic waveform, and £, (*) is the a priori probability density
of the random phase. Appropriate signal space geometry is
introduced and phase estimation results obtained for general
periodic waveforms including, in particular, the squarewave
case.

In what follows, the estimation model is extended to in-
clude phase, which is a polynomial function of time of given
degree with coefficients to be estimated. The first-degree two-
dimensional case (unknown frequency) is solved for small and
large noise, and concepts of differential geometry are intro-
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duced to better understand and solve higher dimensional cases.
The section and equation numbers continue from Part L

VIl.2 Estimation of Phase and Frequency
When the Frequency is Unknown
but Constant

t
-’Vi J-t ")y (R dt ¥l fL) +Hnf, ) (19)°
1

as the quantity to be max1mlzed w1th respect to f and x to
provide the MAP estimators f and x . Then Eq (21) is re-
placed by

2ULTE X))+ Ny Inf(f) +Ny Inf,(x)  (80)

where

Z=3(f, x,) +1 (81)
and

y(ft +x) =4 cos .211(ft +x) (82)

for the present. In the previous cases of known frequency, T
could be chosen_}to make fT an integer and therefore make
IIy(f x)l| and |iz]l not functions of X, In the present case of
unknown f, this is not possible and y(f x) lies on a closed
hypersurface which is in effect the surface of a hypersphere
with ripples. However, if we assume fT > 1, as is often the case
of interest, then the fractional variation in ||J—’)(ﬂ x| ap-
proaches zero and

R |0 Rl 7 42 cost antpr 4 n)a
P x) T - o cos” 2n(fr +x) dt

= —= (83)

The vector ;(f, x) describes a two-dimensional curved sur-
face parameterized by fand x. For fixed f, the cross section of
the surface is a circle lying in a plane through the origin. The

2Section and equation numbers continue from Part L.
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fx coordinate system on the surface is locally orthogonal and
the surface is embedded in an infinite-dimensional linear space.
Some feeling for the curvature of the surface is given by Fig. 1.
Calculation shows that

<37(f, X, ¥ (f+ %x)> =0 (844)
for n any nonzero integer and
<5)’(f, x), ¥ (ﬁx + %)> =0 (84b)

Flgure 1 indicates that in going from y(f x) to y(f + 1/T, x),
J(f + 1/2T, x) leaves the plane ofy(f x) and y(f+ 1/T, x) by
an angle of 25.8° while making angles of 50.5° with W, %)
and P(f + 1/T, x). (In this signal space there are many direc-
tions normal to the above plane and the normal N dropped
from }*(f + 1/27, x) to the plane is only one of them.)

Takmg the hint from Egs. (84), a convenient orthonormal
basis ul v for the infinite dimensional flat (euclidean) space
L spanned by the two-dimensional curved surface described

by 37, x) is given by

u (t) = \/- cos 27 (f + ) t (852)
v )= /3; sin 2 (fc * }) t (85b)

with / running over all integers, the time intervalis ¢, = -T2,
t, =T/2, and f, T > 1. For the case of Eq. (82),

) = E O, 4 *

j=—o00

¥, (86)

where
sin w[(f, - f)T + i]
n[(f, - T +i]

v, %) = / (cos 2mx)
(87a)

_ \/F ' sin 1r[(fo—f)T+i]
y,Mx) =4, -2—(s1n 2mx) 717, - NT+i]

(87b)




If we define

T/2 ;

Ii =f z(?) cos 27 (f 7,) tdt (88a)
=T/2

T/2 ;

Q= f z(t) sin 27 (fc+ T) tdt (88b)
-T2
then the coordinates 2,2, 0f Zare given by
A ALY 89a)
z,,= g up = T4 (89a)
=G = /% 89b
z, =4, V) = TQf (89b)
Now

- = )

I = Y @Yyt 2V (90)
==
Substituting from Egs. (87) and (89) gives
(z y(f x)) = E A (I, cos 2mx +Qi sin 27x)

sin w[(f, = /)T +1i]

; (91)
w[(f, - HT +i]

for substitution in Eq (80). This is then maximized to find the
MAP estimate of X, x, and f0

For the case of small noise, the a priori probability terms in
Eq (80) generally become neg]1g1b1e and the MAP estimator
fo’ x is obtained by maximizing G y(f x)} in Eq. (91). Fol-
.lowmg the argument on page 159 of Part I, Eq. (54) is re-
placed by

NO
2(%,)=—2 92
0*(x) E)’ (92)

(ax

NO

2N -—2—-
o*(fy) = (93)

Now

axy(f x)"2 =fm [a_iy(ft'Fx)]zdt

3
-T2
(94)

and by Eq. (82),

95\ 2 ' Tz -
(——) = 4r°4? f sin? 2n(ft +x)de =202 A2 T

ox
-7/2
(95)
since T3 1/f. Then by Eq. (92),
a y
02(330) = ..__2.._ = _1_ 0 (96)

which is the same as the result in Eq, (54) for a sinusoid of

“known frequency. Thus for the small noise case, the phase

error is not increased if the frequency is unknown (but
constant).

Proceeding with the estimate fo of the frequency f,, we

have
2 T2 [y 2
= f [—a}.y(ft+x)] dt
~T(2
Cy

|0
and by Eq. (82),

asY ., 2, T/Zz-z Rapr
o) 4n” A7 t* sin 27r(ft+x)dt=—6-AcT

-T/2
(98)
since T'> 1/f. Then by Eq. (93),
N
2F) =3 0 :
G = (99)
From Egs. (96) and (99),
ox.)
0
T=2+/3 —= 100
el (100)
2 ”~~
p A o(fo)
A il (10D
o Mo 16437 PR
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For example, with o(x ) =0.01 cycles (3.6°) and U(f })=1Hz
we have T = 0.0346 s and P/N,, = 3656 (35.6 dB). The fre-
quency spacing 1/7T of the correlators in Eq. (88) would then
be 28.87 Hz. Both the frequency spacing and the required
P/N are directly proportional to a(fo)

Returning now to the general case, let us consider the maxi-
mization of Eq. (80). For the initial estimate, we generally
have fx(') =1 and ff(-) constant over some interval and zero
elsewhere. Thus let us consider the maximization of Eq. (91).
Define -

a=(f,-N)T (102)
and
Ie) = Y I S‘“ﬂ’(rc(““‘)’) (103a)
{=—o0
o) = Z g, res) (103b)

so that Eq. (91) becomes
<Z ;(f, x)) = A [I(e) cos 2mx + Q(e) sin 27x]  (104)

I(c) and Q(o) are simply the cardinal series (minimum band-
width) interpolations of the samples / ; and Q, respectively,
with a sampling rate of unity in the o coordinate. Now by
Eqgs. (81), (82), (86), (89), and (68) the /; and Q, are simply
VT2 pgui and VT2 Y i respectively, plus independent
Gaussian random variables of mean zero and variance N, T/4.
By Eq. (87)

AT sin m(a, +1)
0 _—(—;TI'-I_)-— (1058)

VIZY i =

sin m(a, +1)

= % (i —_
v/ T/2y0vi = (sin 2mx ) g+ D) (105b)

Thus, Il. and Ql. are samples of

AT sin (o~ o)

— (cos 2mx ) W (106a)
and

AcT ) sin m(a ~ ao)

—2 (Sll'l 27er) W (106b)
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respectively, taken at integer values of a plus the random vari-
ables described above. Now the function of &« in Eq. (106) is
band limited at half the sampling rate and so the interpolated
functions of Eq. (103) are simply the functions of Eq. (106)
plus Gaussian band-limited white noise of bandwidth 1/2 and
variance N, T/4. Thus

sin m(a - &)

Tra- ) +ﬂ,(01):| (107a)

I(@) = % |:Ac(cos 2mx,)

sin m(a - &)

W + nQ(a)] (107b)

Qo) = % [Ac(sin 21er)

where n(a) and n Q(oz) are independent Gaussian band-limited
white random processes with

o* [n (@] = *[n, ()] X (108)
T Q 5

Returning now to Eq. (104) we observe that ¢z, 3, X)) can
be maximized in two steps. In the first step we choose x(a) to
maximize the expression for each a. A necessary condition is

ax (z y(f x)=2nA4 [— 1(a) sin 27x + Q) cos 2mx] =
(109)

which gives

= 9@

tan 2mx I(oz)

(110

This has two solutions for x, one giving the absolute maximum
and the other the absolute minimum of Eq. (104) with respect
to x. The value of x in Eq. (110) giving the maximum is that

. which causes cos 2mx to have the same sign as /() and sin 2mx

to have the same sign as Q(e). From Eq. (110) and the above,

sin 277;?0 . L@@ (111a)
L+ (Q(a))
I(a)
cos 27X, = sl (111b)
/14 (Q(a)>
I(o)
Substitution in Eq. (104) gives
@3, = P@+Q%@  (112)
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Thus, by Bq. (102) 7, =f, - (8,/T) where &, is the value of &
which maximizes
@ 3, 5P
2
[+

= (@) +0*@ (113)

The large noise behavior of 620 may be studied by using
Eq. (107) to substitute for I{(e) and Q(e) in Eq. (113). The
actual estimator must use Eqs. (103), (113), and (111). Even
in the absence of noise, Eq. (113) has many stationary points
(relative maxima and minima) and so an indirect estimator is
a problem. Since the maxima and minima of Eq. (113) are
always stationary points (n 1(0‘) and n 0 (e) have all derivatives),
one approach would be to solve

L P +0*@)=0

for all of the stationary points in the a priori interval deter-
mined by ff(a) and then evaluate Eq. (113) at these points to
locate the absolute maximum. For a particular noise realiza-
tion, Eq. (112) will generally not be an even function about its
maximum and so the MAP estimator is generally not the mini-
mum mean square error (MSE) or mean absolute error (MAE)
estimator, In the case of a general a priori distribution f!(-) on
f and noise which is not small, it is necessary to substitute
Eq. (112) in Eq. (80) and seek the maximum of

24_ VP (@) + Q@) +N, Inf, (@)

where f, () is easily obtained from ff(-) in the usual way.

(115)

VIIl. Some Geometrical Aspects
In the more general case where Eq. (82) is replaced by

2 -1
y(x +ft + f—% toee f(N‘2)%-:-l—)~!) (116)

then the terminal points of

PICSF AR ) (117)
form an N-dimensional subspace (generally nonlinear) that is
coordinatized by the NV parameters to be estimated and that is
imbedded in the infinite dimensional linear space3 in which
the observed signal plus noise is represented. As we have seen,
the estimation problem involves such questions as the point in

3An N-dimensional noneuclidean space can always be imbedded in
euclidean space of not more than N (N + 1)/2 dimensions (Ref. 2).

(114)

the parameter subspace that is at minimum distance from an
arbitrary point in the imbedding linear signal (plus noise) space
and the effect of the noise on the location of the point in the
parameter subspace. The solution of the estimation problem
depends on both the intrinsic (Ref. 3) and extrinsic geometri-
cal properties of the nonlinear parameter space with the small
noise results depending only on the intrinsic geometry. To gain
insight, we examine several cases.

First case: Phase estimation only with known frequency
f. (V= 1). This was treated analytically in Section VI (Part I)
with the periodic waveform given by Eq. (55). The geo-
metrical situation is illustrated in Fig. 2. The one-dimensional
parameter space (path) lies on the surface of a 2n dimen-
sional hypersphere (and is therefore nonlinear). For this
one-dimensional case, the intrinsic geometry of the path is
completely described by the single scalar ds/dx, given by
Eq. (56), with the small noise result given by the second term
of Eq. (54). If y(*) has one or more discontinuities, such as a
square wave, then ds/dx — o and the small-noise performance
becomes arbitrarily good (the closed path, while continuous,
has no derivative and is infinite in length).

For large noise, the extrinsic geometry of the path becomes

important. The radius of curvature (ROC) (Ref. 4) is given by

(see Eq. 55, Part I)

P j / »
ROC=\/—_72:— 1 (118)
n

4l 2.2
] (“/ +b1')
=

which vanishes if there is a discontinuity in y (*) or its deriva-
tives. The distance between any two points on the path, ﬂxl)
andjz’(x2 ), is given by

||5)>(x1) - 5;(3«72)”2 = TE(aI% bjz) [1 - cos 27 (x, -~ x,)]
j=1
(119)

which, of course, never exceeds twice the radius of the hyper-
sphere in whose surface the path'is imbedded. Note that the
above extrinsic properties are invariant over the path.

Second case: Phase and frequency estimation with un-
known constant frequency (N = 2) and sinusoidal waveform.
This was treated analytically in Section VII. .The two-
dimensional parameter space (surface) is nonlinear as indicated
by Fig. 1. Even for the special case of y (*) sinusoidal, the two-
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dimensional surface spans (must be imbedded in) an infinite
dimensional signal space. It is something like a tube extending
through all of the dimensions of the signal space as f runs over
its range. The intrinsic geometry of the surface is completely
described by (Ref. 5)

2
a® = ) g,dudd
L,1=1

(120

where s is the distance in the surface, u! = x and u? = f are the
contravariant coordinate values in the surface, and g, is the
second-order covariant metric tensor of the surface. Calcu-
lation gives )

= 2.2 42
g, = 2m° A7 T

172A2 Vad

£ = (121)

81, =8, =0
Thus the f, x coordinate system in the surface is everywhere
orthogonal (g,, =g,; = 0) and uniform (g, andg,, are con-

stant). Also the surface is developable, that is, it has no intrin-
sic curvature. Now

(g_;)z- = & (%)2 = &5

and the small noise result has been given in Eqs. (96) and (99).

(122)

‘The extrinsic geometry of the surface is given by Eqgs. (86)
and (87) and the large noise estimation case has been consid-
ered begining with Eq. (102).

Third case: Phase, frequency, and ffequency-rate estima-
tion with unknown constant frequency rate (¥ = 3). The sur-
face of the second case now becomes a three-dimensional
volume by the coordinate f, which turns out not to be ortho-
gonal to the surface coordinatized by x and f. For small noise,
the intrinsic geometry is determined by

3
ds® = Z g,/du"duj
i,j=1

(123)

withul =x, u2 =fud=f €117 8220 815, and g, have the
same values as in the second case. Calculation gives

n* A2 T°
£33 7 T 160
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=0

833 T &3

w2 A% T3
—_°c

D (124)

813 ~ 831 T

Thus the f coordinate is orthogonal to the f coordinate and the
angle 6 between the f and x coordinates is given by

g .
cos § = — 2> = -‘/31—= 0.745
VEii1 833 .
o 2
6 =42 sin 0 =3 (125)

So in the small noise case, the errors in the estimates fo and X 0
have a correlation of 0.745 and the errors in the other two
pairs of estimates are uncorrelated. As in the two-dimensional
case, the intrinsic geometry of the three-dimensional manifold
has no curvature (gil- components are constants),

For the small noise case

~ N [2 N J2
: 0 0
o (fy) = = (126)
ds. 833
df
giving
~ N
f 80 (]
@ (fy) == (127)
0 n A2 TS

For the example following Eq. (101), where it was found that
0(%y) = 0.01 cycles and a(fo),.\= 1 Hz, with T = 0.0346 s

and P/N, = 3656, the result for f; is
ofy) = 149.5 Hzfs

If T is increased by a factor of 10 to 0.346 s, the above
becomes

of,) = 0.47 Hs

The above results can be extended in a straightforward way
to the estimation of the higher derivatives of frequency
(V> 3) if a priori knowledge indicates they are significant,

IX. Algorithms

Computational algorithms based on the preceding results
such as Egs. (88), (103), (113), (111), and (102) are feasible
with current digital signal processing technology and would




provide a sequence of MAP estimates at a rate 1/7. Such algo-
rithms are quite different from phase-locked loops, which are
frequently used for phase and frequency estimation. The
phase-locked loop is an invented causal dynamical system that
does not provide an optimum estimate based on a criterion.

The phase-locked loop, like any rea] feedback system, has its
own dynamics and stability considerations, which are not reafly
a part of the estimation problem. The stability considerations
of third- and higher-order phase-locked loops are not present
in algorithms based on the results of this paper.
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